Performance Study on Aisi316 and Aisi410 Using Different Layered Coated Cutting Tools in Cnc Turning
نویسندگان
چکیده
Stainless steel (SS) is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR) is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316) and martensitic stainless steel (AISI410) by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B) and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA) is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.
منابع مشابه
Prediction Model for CNC Turning on AISI316 with Single and Multilayered Cutting tool Using Box Behnken Design (RESEARCH NOTE)
Austenitic stainless steels (AISI316) are used for many commercial and industrial applications for their excellent corrosive resistance. AISI316 is generally difficult to machine material due to their high strength and high work hardening tendency. Tool wear (TW) and surface roughness (SR) are broadly considered the most challenging phases causing poor quality in machining. Optimization of cutt...
متن کاملExperimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted
Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملEXPERIMENTAL ANALYSIS OF CNC TURNING OF NYLON USING TAGUCHI METHOD
Manufacturing process frequently employs optimization of machining parameters in order to improve product quality as well as to enhance productivity. The material removal rate is a significant indicator of the productivity and cost efficiency of the process. Taguchi method has been implemented for assessing favorable (optimal) machining condition during the machining of nylon by considering thr...
متن کاملDevelopment of a QFD-based expert system for CNC turning centre selection
Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select ...
متن کامل